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INTERNATIONAL ECONOMIC REVIEW 
Vol. 16, No. 2, June, 1975 

NONCOOPERATIVE AND DOMINANT PLAYER SOLUTIONS 
IN DISCRETE DYNAMIC GAMES* 

BY FINN KYDLAND1 

1. INTRODUCTION 

ECONOMISTS' INTEREST IN THE PROBLEM of how to apply economic instruments 
so as to reach certain targets dates at least back to the work of Meade [17] and 
Tinbergen [31]. Their approach, however, differed from the optimal control 
formulations in terms of linear systems with quadratic objective function later 
discussed by Simon [26], Theil [29], and Holt et al. [12]. Early applications of 
control theory were made by Bogaard and Theil [1], Holt [11] and Theil [30]. 
In the last couple of years we have seen a continuance, if not revival, of interest 
in control type macroeconomic planning models. Some economists have done 
a good job in making results from the control literature available in a form con- 
venient to the economist, stressing the aspects of control theory likely to be most 
useful to him. They have also done theoretical work on problems of interest in 
economic models, such as problems arising from the stochastic nature of the 
models, including stochastic coefficients and learning over time.2 

In all the papers mentioned above it was assumed that there is only one deci- 
sion maker, or at least that there is only one objective function. However, in 
actual life the instruments of the economy can be under the control of different 
policymakers who each may have conflicting views on target values or the rela- 
tive importance of the targets. In the U.S., for instance, it is unlikely that the 
Congress or the Administration, controlling fiscal policy, and the Federal Reserve 
Board, controlling monetary policy, hold the same views on what the targets of 
their policies should be. It is not clear either that much cooperation is taking 
place between them. James L. Pierce on the Board of Governors of the Federal 
Reserve System described the situation as follows:3 "One of our biggest prob- 
lems is predicting fiscal policy over the policy horizon. As you know, in the 
United States, monetary and fiscal policy are determined separately." 

What particularly complicates the situation, is that one cannot just predict 
the policy of the other policymaker and go ahead taking that as a given. One 
must also, if one is rational, take into account the effect that one's own policy 

* Manuscript received March 26, 1974; revised August 20, 1974. 
l This paper is based on a chapter of my Ph. D. dissertation submitted to Carnegie-Mellon 

University. I am indebted to David Cass, Robert S. Kaplan, and Edward C. Prescott for their 
advice and encouragement. 

2 Some recent papers are Chow [3, 4, 5, 6], Holbrook [10], Pindyck [21], and Prescott [22, 23]. 
See also the papers presented at the NBER-NSF Conference on Stochastic Control and Econom- 
ic Systems in Chicago, June 7-9, 1973. Some of these papers are published in Annals of 
Economic and Social Measurement, III (January, 1974). Zellner [32, (Chapter XI)] has a good 
discussion of the stochastic aspects of optimal control. 

3 Pierce [20, (12)]. 
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32 2 FINN KYDLAND 

will have on the other policymaker's policies in the future. This discussion 
suggests a formulation of decentralized policymaking as a dynamic game. 

In this paper we present such a game-theoretic framework. The decision 
environment is described by a set of linear difference equations with additive 
disturbances. Each player is assumed to behave as if he minimizes the expected 
value of a preference (loss) function which is approximated by a quadratic fullc- 
tion.4 The objective functions are in general different for each player. 

In making his decision each player has certain expectations as to what the 
other players will do. In this paper we study equilibrium solutions, and leave 
problems of stability aside.' We assume that no coalitions are formed, and we 
shall first study noncooperative solutions (also called Nash equilibria). The 
equilibrium solution is such that, given the decisions of the other players, no 
player has any incentive to change his decision rule (or regret having chosen it). 
We might say that the players are assumed to have rational expectations in the 
sense that the expectation of the others' actions turn out to be the actual out- 
come.6 However, in dynamic games there turn out to be more than one possible 
solution concept which give different solutions, even in the absence of uncertainty. 
A central topic of this paper is therefore the evaluation of open loop and feed- 
back solutions as possible candidates for an equilibrium solution. 

In Section 2 we present the noncooperative feedback solution to an n-person 
dynamic game. We also comment on how the open loop solution could be 
computed. In Section 3 open loop and feedback solutions are compared, and 
we try to give an understanding of why they are different. 

Casual observation of macroeconomic policymaking in the U.S. indicates 
that the assumption of noncooperative solution is not necessarily the one that 
describes reality best. It seems that the Congress with certain intervals will 
announce its tax and spending policy. Given that, the Federal Reserve Board 
will try to meet its objectives by adjusting its monetary instruments. We might 
say that the Congress is a dominant player who announces his decision first, 

4 Admittedly our assumptions are such that uncertainty will play only a minor role. We shall 
be able to use the well known certainty equivalence property (cf. Simon [26] or Theil [29]) and 
compute the relevant decision rules from a problem where the stochastic variables are replaced 
by their mean values. However, the implications of uncertainty will be pointed out wherever 
necessary, and even when included in such a simple manner, the presence uncertainty may 
still lead to key results, as can be seen for instance in [15]. 

5 By stability we refer to the property that under reasonable assumptions the decision rules 
will move towards the equilibrium decision rules if the system is subject to shocks, or if the 
players initially have incomplete information about how the system works. By contrast, the 
literature on the assignment problem, which also deals with decentralized policymaking, al- 
though not from an optimization point of view, is mainly concerned with the stability problem. 
The so-called principle of effective market classification states that each policy instrument should 
be directed towards that target on which it has relatively the greatest impact. Mundell, who 
first posed the problem [18], has stated that the principle of effective market classification is 
basically a mathematical proposition which implies that, instead of letting each institution deal 
with several problems (or goals), responsibilities should be allocated to various authorities in 
such a way as to ensure stability of the system (see [7, (129)]). 

6 See Muth [19] or Lucas and Prescott [16] for discussions of the concept of rational expecta- 
tions. 
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PLAYER SOLUTfONS IN DYNAMIC GAMES 323 

while the other player (the Fed) decides what his optimal decision is, taking 
the decision of the dominant player as given. In making his decision, the dom- 
inant player takes into account the reaction functions of the nondominant 
players. In equilibrium he correctly foresees these functions. In the case where 
there is more than one nondominant player, these are assumed to behave nonm 
cooperatively among themselves. The feedback solution for this case is given in 
Section 4. We point outt that the open loop solution is likely lo fail as anl. equi- 
librium concept. 

The dominant player solution is a special case of a much more general solu- 
tion concept into which almost any kind of hierarchical structure can be incor- 
porated. We indicate how our results can be generalized in that direction. 

A few short remarks on the infinite horizon problem are made in Section 5. 
The final section offers some concluding comments, in particular with regard to 
economic applications. 

2. NONCOOPERATIVE SOLUTIONS IN DISCRETE DYNAMIC GAMES7 

To simplify notation we shall assume, with little loss of generality, that each 
of the n players has control over one instrument only. More general cases can 
be taken care of in our model by specifying the same preference function for 
more than one player. 

In the following x, will be an n-dimensional vector, .y is m-dimensional, and 
the remaining dimensions will be obvious. Define 

w41i(yt) -PiYt + 2 YQiJ't 

Then the optimization problem for player i is 

minimize E { E i- l(y)} 
{Xj~~.'i7I'I t~y1 {-Yi, , e] X t=1 

subject to8 

Yt = Ayt-1 + Bxt + c + St 

yo given 
o < 9! < 1 

St identically and independently distributed over time with 
mean 0 and finite covariance matrix A. 

Given decisions of the other players. 

7 From the viewpoint of game theory this section does not really offer any new results. 
Games in discrete time are, of course, quite similar to games in continuous time. Papers on 
differential games discussing both open loop and closed loop controls for linear-quadratic sys- 
tems are Case [2], Foley and Schmitendorf [8], Ho [9], and Starr and Ho [27, 28]. The domi- 
nant player problem, on the other hand, has only recently received a little attention in the game 
literature, and the two interesting papers by Simaan and Cruz [24, 25] should be mentioned. 

8 The results of this paper for the finite horizon case can easily be extended to include ex- 
ogenous variables.- 
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324 FINN KYDLAND 

It is well known that linear systems with any finite number of lags can be 
written on the above form after a suitable redefinition of variables (see e.g., 
Chow [5, 6] or Prescott [22]). Also, dependence of the objective function on 
the instruments can be incorporated. For example, assume that it is considered 
costly to change the instruments fast. Then we might have 

W(Xt-1 , Xt, Yt) = P Y1 + 2 Y1QYt + 2 (Xt-Xt-)K(xt - xt-1) 

subject to 
Yt -Alyt1 + A2Yt-2 + Blxt + B2Xt-1 + C 

This we can write as 

w(xti, XtYt) = [P 0 0 0] [Yt Yt-i Xt Xt-.1] 

Yt Q 0 0 0 - Yt 
1 Yt-I 0 0 0 0 Yt-1 

+ 2 xt 00 K -K xt 

_Xt- _ 0 0 -K K Xt-_ 

Yt A1 A2 B2 0 Yti B1 c 

Yt- I I 0 0 0 Yt- 2 0 0 
+ xt + 

xt 0 0 0 0 t I I 0 

_ Xt-1 _ 0 0 I 0 _ 0 0_ 0 0 

which by an obvious redefinition of variables can be written on the form we 
are using. 

The assumptions on st clearly allow us to use the certainty equivalence prop- 
erty and ignore the disturbances in computing the first-period decision rules. 
We thus omit at except where it makes a difference. 

Backward induction will now be used to compute the equilibrium feedback 
solution. We let vit(yt-1) denote the total loss incurred to player i in following 
an optimal equilibrium policy from period t to the end of the horizon when 
the state variables initially are Yt-1. We define VT+1 0- 

To make clear the distinction between the decision variable under the player's 
own control, and expected values of others' decisions, we shall denote the former 
by zi for player i, and the latter by xj,]j 7 i. Then the optimization problem 
for player i in period t can be formulated as follows, where bi is column i of B 

Vit(yt-1) = miin {wi(yt) + pivjt+1(yt)J 
Zit 

subject to 
n 

(2.1) Yt = Ayt-1 + E bjxjt + bizit + c . 
j=1 
jpi 

DEFINITION. An equilibrium decision at time t is a decision x4 such that 
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PLAYER SOLUTIONS IN DYNAMIC GAMES 325 

min twi( Ayt1 + E bjx~t + bizit d- c) 
Z.n t 

Ay J - j=1 

+ piVit+1 (Ayt_lQ E j + b -zit + c)} 

= ivi(Ayt-I + Bx? + c) + Pjvjt+1(Ayt-j + Bx? + c), 

i= 1,.., n. 

This definition implies that, in order to get the equilibrium solution, we shall 
be looking for a solution such that x = z. This means that for no player does 
it pay to change his decision for any time period. 

We define the following notation 

[bl(Qj + b9S1,t+1) 1 'b(p1 + liZri,t+i) 

Ht=. and kt I 

b (Qn +XSna+0 b/(pn + Xinrnt+)J 

THEOREM 1. Assume that 
( iM)b(Qj + ,jSj~,t+j) bi > 0 for i = 1, ... ., n, and t = 1,..IT. 

(ii) jHtBI :f O for t = 1, ... ., T. 

Then we can compute recursively the unique equilibrium solution for period t 

z- = x -(HtB)-I(kt + H1c + HtAyt- ) 

dt + Etyt-1 

and the value function for player i, i = 1,.. , n, which is of the form 

Vit(yt-1) = vit + rityt-j + 2yt- sityt 

where Vi,T+l _ 0, and where vit, rit and Sit are determined by9 

sit = (A + BEt)'(Qi + PiS1,t+?1)(A + BET) 

rit = (A + BEt)'[pj + PI3rj,t+? + (QZ + PiSi,t+?)(Bdt + c)] 

t= j ++[+ + [pi + PIrit?l + + PiSi,?,i)(Bdt + c)] (Bdt + c). 

PROOF. Assume that vit+l has been found by backward induction for all i. 
It is trivial to show that each vit+l is quadratic, say, 

yt) = vj,t+j + rtit+jyt + 2 i = 1,... , n. 

With a stochastic Et we have to add to pit the term 1/2 trace ((Q. + P1Si,te+D2). Note that 
if the state vector has been augmented as describedo n page 324, a lot of computations are saved 
by remembering that the corresponding added parts of r, S, d, and E are zero. For many pur- 
poses we are only interested in E, which characterizes the solution. In that case we need not 
compute the recursive relations for d, r, and v. 
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326 FINN KYDLAND 

We canl. now write 

(2.2) Vim(Ym--,)-n ill {Iivist+i + (pi -- pirit+'yJ't 
Zit 

+ - :v'(QI + j9,St, } 

Substituting for yt from (2.1) and differentiating we get the first-order condi- 
tioins, which by assumption (i) are both necessary and sufficient for a minimum: 

(2.3) bY(pi + P3r1,t+l) + bY(Qi + Pi9S1,t+l) 

X (AYtl + E bjxjt + bizit + c) = O 1 ... n. 
pf- 1 

The decision function for player i is 

1 _ 
- 

bt(Qi + P1S1,t+)b b'(p + P1brit i + (Qi + PI3Sbti)c) 

jit + b'(Q1 + PjSj,t~1)Aytq1 + Z, b(Q, + P~~~~ 

and in equilibrium we have, using assumption (ii) 

(2.4) Z= - - (HtB)'(kt + Htc + HtAyt1) 

-dt + Etyt- 
which is unique. 

We can now substitute from (2.1) and (2.4) into (2.2), giving both the left- 
hand side and the right hand side in terms of Y,-l. Comparing the coefficients 
for the second-degree term, the first-degree term, and the constant, respectively, 
we get the recursive relations for Sit, rite and pit. This completes the proof. 

Assumption (i) is relatively weak in that it can be satisfied for player i even 
if some diagonal elements of Qi are negative; that is, Qi need not even be posi- 
tive semidefinite as is usually required for the standard control problem. 

The implications of Assumption (ii) may be less obvious. Hopefully Figure 
1 is helpful in this regard. Assume for simplicity that there are only two players, 
with control over x1t and x2t, respectively. Also define the following notation 

Uit(xty t-) = wi(yt) + Pvi1,t+1(ylt) 

For a given Yt-1, then, the possible decisions at time t imply values for yt, which 
again imply values of ult and u2t. This means that, for a given time period t 

and a given value of Yt-1, we can draw constant uit-contours in a diagram with 
Zlt (or x1t) and Z2t (or x2t) along the axes. We know that u1t(xtIytj) is a quad- 
ratic function. Given what player 1, say, thinks that player 2 will do as re- 
presented by x2t he will choose zjt according to the following equation, where 
a, is some constant 

b'(Ql + PiS1,t+1)blzlt + bl(Ql + P1S1,te+)b2X2t + 1 = 0. 
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PLAYER SOLUTIONS IN DYNAMIC GAMES 327 

z2ti 

x2t Constant ult 

zit3 x it 

FIGURL I 

This is a straight line, and is shown in Figure 1 going through the contOUrS 

drawn for player 1. 
Similarly, player 2 will behave according to 

b2(Q2 + p2S2,t+1)b1x1t + b2(Q2 + ~2S2,t+,)b2z2t + a2 = 0 

This is the straight line through the contours for player 2. The equilibrium 
solution is the point A where the two reaction lines cross. Assumption (ii) 
guarantees that the two lines do not have the same slope, in which case there 
would either be infinitely many solutions if the lines were identical, or no solu- 
tion at all if they were not identical. 

Before ending this section we shall try to give an understanding, without 
going into details, of how the open. loop solution could be obtained. The most 
instructive way to set up the problem is probably to write out all the equations 
for all the T time periods at once and solve. The problem for player i would 
then look as follows10 

Pi Yi Yi' QiO 0 y 

minimize Y + 4 ? 
[xilI. ,*- XiT}. 2 . . . . . . . .. 

il9T'Pi YrT Y7r 0 0 A Q y', 
subject to 

10 For simplicity we do not distinguish between xi and zi as we did above. 
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328 FINN KYDLAND 

Yi A- B 0 ...0 I1 

Y2 A2 AB B ...0 X2 I + A 
Yo+ .. 

YT AT AT-1B AT-2B ...B XT E Al 
_I - - - - - i=O - 

yo given. 

Differentiating with respect to xit, t = 1, T. . , T, player i obtains the first-order 
conditions for a minimum in the form of T equations. The equilibrium open 
loop solution is obtained by solving the system of n T equations from all of the 
players, giving 

-I + : Yo' 
L d*] [El 

where the starred d's and E's depend on the parameters of the problems for the 
n players. We now proceed to compare the two types of solutions, in particular 
with regard to their suitability as an equilibrium concept. 

3. A COMPARISON OF OPEN LOOP AND FEEDBACK SOLUTIONS 

The difference between the two solution concepts will become clearer if we 
use a somewhat more general and compact notation. Since the argument does 
not depend on the presence of random disturbances, we consider for simplicity 
the deterministic version of the model. 

The open loop solution is found by solving 

T 
minimize E j3t-Iwi(yi) . il, --ZiT t1 I 

subject to 
Y =fti(yo, x, . . .,x, IZil, * * .,Zi) , t = 1,..., T 

Y, X1 ., Xi given, 
where 

tXi = (Xlt, . . * , Xi-lst, Xi+lst, * *sXnt) 

is player i's expectation of the other players' decisions. 
The solutions to this problem for each time period are n mappings 

Yo, xl,, * * *, XT --*Zit Xi i= 1, . . . , n; t =1...,T 

derived from the first-order conditions for a minimum. The assumption of non- 
cooperative solution implies that'1 

Zt = g=*(Yo), t= 1,..., T. 

In the stochastic case we would have zt = xt = g*(yo, l-1,. , T. 
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PLAYER SOLUTIONS IN DYNAMIC GAMES 329 

For the feedback solution we assume that at each time period a noncoopera- 
tive solution is chosen as a function of the state variable at that time. This 
means that each player, instead of taking as given a sequence of decisions for 
the other players, takes as given decision rules for each time period t that are 
functions of the state variables Yt,-i The optimization problem for player i, 
then, is 

minimize E B'wi(yi) 
Zij.ZiT t=1 

subject to 
yt = fi(ytI i xti , Zit) 

YO, X = gi(y-1) given. 

Let vit,+(yt), i 1,... , n, be the total values of the succession of noncoopera- 
tive solutions 

Zs = xs = My-), s= t + 1+,..., T. 
Then we have 

vit(yt-1, xi) = min {wi(yi) + j3Ivi,t+j(yi)} 
Zit 

subject to 
Yz = !i(Yt-, xtiZit) 

Yt-1, x, given. 

The solutions are mappings 
Yt-i, x, -+ * i = 1 , ., 

which by the assumption of noncooperative solution imply 

Zt = xt = gt(yti_) - 

Given this solution, we can now evaluate the value functions as functions of 
Yt-i only, and vit(yt-1), i = 1, . .. , n, thus gives the total value of the succession 
of noncooperative solutions from period t until the end of the horizon. 

It is clear that the feedback solution is different from the open loop solution, 
even ignoring the randomness.12 Intuitively, the reason for this is as follows. 

12 A simple numerical example may be useful. Assume that the problems of two noncoopera- 
tive players are 

maximize E [(1-YU - Y2t)Yit -!X 
xil,xi2 t=1 2 

subject to 
Yit = Yit-i + xit, 1 = 1, 2, 

yo given. 

The open loop decision rules for player 1 are (since the two problems are symmetric, the deci- 
sion rules are symmetric) 

x, = -.6947ylo - .0947Y2o + .2632 

X2 = -.1789yjo + .0211Y20 + .0526 

while the corresponding feedback solutions are 
(Continued on next page) 
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330 FINN KYDLAND 

In making his decision, player i knows that it will affect the state variables. 
A change in the state variables will change the other players' decisions in the 
future. This change in the other players' decisions will have an effect on future 
losses for player i. This fact is taken into account in the feedback solution when 
player i makes his decision. 

Both approaches may be said to represent noncooperative solutions in some 
sense. However, the feature described above seems to lend more realism to the 
feedback solution as an equilibrium concept. It seems reasonable in many 
models to assume that each decision maker will determine the effect of his deci- 
sion on the state variables and consider how other players will react in the 
future. For instance, in an oligopolistic industry each firm may take into con- 
sideration the effect of its decision on market shares and assume that the other 
players will react in certain ways to different sizes of the market shares. This 
seems particularly reasonable if we think in terms of stability, that is, view the 
equilibrium solution as the end result of a process with all the players groping 
for decision rules that are such that, given the others' actions, nobody has any 
incentive to change the rule, and where forecasting errors are corrected as the 
players learn more about the other players' behavior. 

4. DOMINANT PLAYER SOLUTIONS 

In this section we assume that one player, say player ii, is dominant in the 
sense that he may announce his decision first, thereby taking into account the 
effect of his decision upon the other players' decisions. When he has announced 
his decision, the other players behave noncooperatively with the decision of the 
dominant player as given. 

We shall outline the computations of the feedback solution. The open loop 
solution will then be obvious. As in Section 2 we assume that the problems for 
the n players are such that the first-order conditions will determine both neces- 
sary and sufficient conditions for a minimum, and that the resulting decision 
functions are unique. 

The problems of the n - 1 nondominant players are as described in Section 
2. There are n - 1 first-order conditions as in (2.3), and given the decision of 
player n, we get a unique noncooperative solution at time t of the form 

(4.1) i . = tit + gtyt-,I + Vit., n-1. 

The optimization problem for the dominant player in period t is 

(4.2) Vit(Yt-) = min {wln(Y) + XVnt+1(Yt)1 
Xnt 

(Continued) 
x1 1 - .6889y( - .0992Y20 F .271+ 

x12 --.6250y1- . 1250y2j -? .2500. 

If the initial state variables were y) - y20 - l, then the open loop solution for player 1 would 
be xd - .1843 and x1)2 .0368, while the feedback solution would be x11 = .1927 andl xj2 = 0305. 
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PLAYER SOLUTIONS IN DYNAMIC GAMES 331 

subject to 

Yt = Ayt-1 + Bxt + c 

Xit= rit + gityt-I + rxitXnt = 1, . . ., n- 1. 

The last two expressions can be combined as follows 

n-l n-1 n-1 
Yt = (A + n bjgp)Yt-i + bn + E bjjt) xnt + c + El by1jt) 

At+yt-, + bs+x,1t + ct+. 

Since we know that vn,t+l(yt) is of the form 

Vn,+l(Yt) = ISn,t+l + rn,t+lYt + IYtSn,t+lYt 2 

we can write (4.2) as 

Vnt(yt-1) = min {Pn2n,t+l + (Pn + Pinrn,t+l)'t 
Xnt 

++ Yt(Qn + PinSn,t+l)Yt}. 

Differentiating, and remembering (4.3), we get 

bql(Pn ? Pnrn,t+?) lit b,/(Q,, + nitSntel)(AYtt ? I4wx~, ? Ct ) 0 

which can be solved for x,,t to give an equation of the form 

(4d4) A fl 
= dt + entyt1 

Substituting (4.4) into (4.1) we get 

(4.5) 1 t = (nit + 7it&nt) + (git + ritent)Yt-I 

(-it + eityt- , i = n. . . 
- n-i. 

Equations (4.4) and (4.5) can now be combined to give 

(4.6) x= dt + Etyt-, 

where 
dt= [alt a * nt] 

and 
Et [ elt,.** elt 

each 6it being a scalar and elt an m-dimensional row vector. 
The formulas for how the coefficients of vit, i = 1, .I. , n, are computed, 

given v1,t1 and (4.6) are the same as in Theorem 1. 
In Figure 1 the points C and B are the solutions when player 1 and player 2, 

respectively, are dominant. The dominant player will choose a point such that 
the other player's reaction line is tangent to one of his own contour curves. In 
this particular example both players are better off in the dominant player solu- 
tion than under noncooperative behavior. It is clear, then, that noncooperative 
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solutions are not in general Pareto optimal. 
We noted in Section 2 that if the two reaction lines are parallel, a noncoopera- 

tive solution does not exist. It is clear, however, that if either of the players is 
dominant, one of his contours can still be tangent to the other's reaction line, 
and thus dominant player solutions may exist. 

We saw in Section 2 that we could not dismiss the open loop solution com- 
pletely as an equilibrium concept for the noncooperative model. In the domi- 
nant player model, however, the open loop solution has a very undesirable 
characteristic. Note first that the dominant player takes into account the reac- 
tions of the other players in all the T periods at once, and then announces his 
decisions for all periods. It might seem, then, that we have an equilibrium. 
However, this depends on the credibility of the dominant player. When the 
first period has elapsed, it pays for the dominant player not to stick to the orig- 
inal plan. If one resolves the problem for the remaining T - 1 periods, the 
new first-period decisions will be different from the original plan for the second 
period."3 If the players foresee this before the first period, they will choose the 
feedback solution instead. This solution has the desirable property that it is 
continually optimal through all the periods of the horizon. The dominant 
player then announces his first-period decision, taking into account the reaction 
functions of the other players, and with all the players correctly foreseeing the 
corresponding sequences of feedback equilibrium solutions in the future periods. 14 

The dominant player model can be generalized to more complicated hierarchical 
structures. We can think of all the players as divided into levels of dominance. 
The players on the highest level take into consideration the effects of their deci- 
sions on the decisions of the players on lower levels. The players on the lowest 
level take the decisions of the players on higher levels as given. The players on 
intermediate levels take the decisions of players on higher levels as given, while 
at the same time taking into consideration the effects of their decisions on the 
decisions of the players on lower levels. All the players on the same level are 
assumed to behave noncooperatively among themselves. The solution method 
would be a generalization of the method outlined in this section, where we have 

13 Continuing with the example of footnote 12, assume now that player 2 is dominant. The 
open loop decision rules are then 

xll - .6876yl0 - .1127y20 + .2382 

X21 =-.1127yl0 - .6479y20 + .3239 

X2 - -.1754yl0 + .0141y20 + .0384 

x22 = .014lylo - .1690y20 + .0845 

Assume again that Ylo = Y2o = .1. Then the solution is xll .1581, x21 = .2479, x12 = .0223, and 
x22 = .0690. However, if the problem is resolved after the first period, it turns out that the 
solution for the second period is x12 = .0286 and x22 = .0500, which for both players gives a 
higher value of the objective function for the last period than the original plan. 

14 In dominant player games we can also distinguish between closed loop and feedback solu- 
tions (see [25]). The closed loop solution is of feedback type but, the dominant player is as- 
sumed to announce his decisions for all periods at the start of the horizon. Like the open loop 
solution the closed loop solution is inconsistent under replanning. 
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only two levels of dominance, and one player on the highest level. 

5. SOME REMARKS ON INFINITE HORIZON GAMES 

The computational methods for finding the infinite period stationary feed- 
back solutions by successive approximations would be similar to the methods 
outlined in Sections 2 and 4. It would take us too far to go into existence and 
convergence problems in this paper.15 Suffice it here to say that for most prob- 
lems convergence has turned out to be quite rapid. These stationary decision 
rules will be solutions to a set of interrelated functional equations, one for each 
player. Similarly, by letting T go to infinity in the open loop formulation, the 
first-period decision rule will converge to a stationary rule which in general will 
be different from the feedback stationary solution. The point we want to make 
is that for infinite horizon models we will discard the open loop solution as 
unsuitable for an equilibrium concept also for the noncooperative model. The 
reason is that if one player takes the stationary open loop rules of the other 
players as given and solves his infinite horizon one-player problem, his open 
loop decision rule is no longer the optimal stationary rule. However, if instead 
he takes the feedback decision rules of the other players as given and solves the 
one-player problem, his feedback decision rule will clearly be the optimal one. 

Observe that when the optimal stationary decision rule, x = d + Ey- , is 
substituted into the moving equations, we get 

y = (A + BE)yI + Bd + c 

which leads to the following stationary solution 

y- = [I- (A + BE)]-L'(Bd + c) . 

If we have a stochastic s, with covariance matrix C& independent of x, we find 
the mean ye and the variance ly* of the stationary solutions as follows 

y- = [I- (A + BE)]-1(Bd + c) 

Xy* = (A + BE)Xy*(A + BE)' + E,. 

If in the last equations we define A + BE = Ilaufjl, =Xy* I=jjai1 andy, = jjuijjjq 
we can write 

i-= 1 if i J 
m m 

1 E (dlidkj - ailatjk)0yk = O1j i aij = 0 otherwise, 
ij= 1,...,m. 

However, since Xy* will be symmetric, we need to solve only m(m - 1)/2 equa- 
tions in the same number of unknowns to find ryes 

15 Conditions for convergence that can be tested beforehand have not yet been established. 
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6. CONCLUDING COMMENTS 

We have been concerned with finding suitable equilibrium solutions for non- 
cooperative and dominant player dynamic games. For that purpose we have 
compared open loop and feedback solutions, which in general are different, even 
in the absence of uncertainty. We argue that the feedback solution is generally 
more appropriate as an equilibrium concept. In the dominant player case the 
feedback solution is such that the plans of all the players are continually optimal 
throughout the horizon, while the open loop solution is inconsistent under 
replanning. 

The potential applications of the results in this paper appear to be numerous. 
The introduction indicates that we originally had decentralized macroeconomic 
policymaking in mind. An application to a problem of that type was presented 
in Kydland [14]. In Kydland and Prescott [15] the problem of finding optimal 
stabilization policies for a competitive economy was formulated as a domi- 
nant player dynamic stochastic game. The policymaker is the dominant player, 
taking into account the reaction functions of economic agents. The results 
were found to have important implications for econometric policy evaluation. 

A traditional application of game theory in. economics has been oligopoly 
theory. In [13] we formulated a dynamic model for an oligopolistic industry ill 
the framework of this paper. The initial results were sufficiently promising to 
lead one to believe that dynamic game-theoretic models may provide new iln- 
sights into empirical phenomena in the area of industrial organization. 

The Norwegian School of Economics and Business Administration 
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